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Introduction

Symbolic summation methods, either based on the WZ-Fasenmyer paradigm [2, 11, 10] or Karr’s
algorithm [6], reduce the given summation problem to finding vectors in the nullspace of a matrix
over a rational function field with one or more variables. Direct methods to find such vectors use
Gaussian elimination with heuristic pivoting strategies, but, due to intermediate expression swell,
can fail to produce results for even moderate sized inputs. In this poster we focus on the case
of one variable, and consider two related approaches that use homomorphic imaging and Chinese
remaindering to compute a nullspace of a matrix over Q(x). We report on a preliminary implemen-
tation of these methods in the open source computer mathematics system Sage [8] and comment
on their performance on actual input matrices obtained from the Mathematica implementation of
Wegshaider’s algorithm [10].

While conceptually simple, these approaches make essential use of many asymptotically fast
methods for integers and polynomials, including not only multiplication, but also radix conversion,
interpolation, rational function and number reconstruction, etc. The single problem of computing
a nullspace over Q(x) thus provides a good test of, and should motivate the further development
of, highly optimized libraries such as GMP [3], FFLAS [1], FLINT [4] and zn poly [5].

Outline of approach

To use homomorphic imaging we need to ensure consistent images modulo the various primes. A
straightforward preprocessing step involving Monte Carlo rank computation, and scaling of the
rows to clear denominators, reduces the problem to computing the nullspace of full row rank matrix
[A |B ] ∈ Z[x]n×(n+m), where A is square nonsingular. A canonical nullspace basis is now given by[

sA−1B
−sI

]
∈ Q[x](n+m)×m,

where the scaling polynomial s ∈ Q[x], a factor of detA, is used to clear denominators (i.e.,
Q(x) → Q[x]) from A−1B ∈ Q(x). The pair (s, sA−1B) is computed modulo various word size
primes p and the final result over Q[x] is recovered using Chinese remaindering and, if needed,
rational number reconstruction. We implemented two approaches to compute a suitable (s, sA−1B).
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An a priori degree bound for det s and det sA−1B is nd, where d is a bound for the degrees of entries
in A and B.

Nullspace via output sensitive x-adic lifting

We compute (s, sA−1B) mod p ∈ Zp[x] using x-adic lifting, with an output sensitive approach that
performs lifting up to max(deg s, deg sA−1B) instead of the a priori degree bound nd. Here, s will
be a monic divisor, possibly proper, of detA, and the final recovery of the result over Q[x] requires
rational number reconstruction as well as Chinese remaindering. The lifting can be reduced to
calling the FFLAS library to perform multiply-add operations, which are implemented efficiently
using hardware floating point arithmetic. The asymptotic cost of computing each image is O (̃n3md)
operations modulo p. Due to the structure of the input matrices, using an output sensitive approach
both for the x-adic lifting and Chinese remaindering greatly improves the performance of this
method. Our implementation instantly finds a solution to the system corresponding to C7,2k in [7],
which is beyond the reach of the standard commands in Maple and Mathematica.

Nullspace via outer product adjoint formula

We compute (detA, (detA)A−1B) mod p ∈ Zp[x] using the outer product adjoint formula approach
of [9]. The cost of computing each image is O (̃n3d + n2md) operations modulo p. Even though
the outer product method has better worst case complexity, and is considerably faster on random
input, for the types of input matrices we encountered in the summation problem the direct x-adic
algorithm gave better results. This is partly due to the fact that the outer product formula requires
us to work with a preconditioned matrix whose adjoint has degrees (n−1)d, thus hiding the structure
of the inputs and preventing effective use of an early termination strategy for the lifting.
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